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1. Certain preliminary remarks. Consider the system of differential equa-
tions of the form

21 = X (@, ) +uf (2 8, ) (1.1)

where x, X, f are n-dimensional vectors, and g is a small parameter.

It is supposed that:

a) The functions X and f are defined and single-valued for all real
values of ¢, for all values of p lying in an interval 0< p < p,, and for
all x lying in an n-dimensional domain G;

b) for all x and p in question, the functions X and f are continuous
and possess the period T

Xzt +T)=X (z,0), fl t=Top)=f (z 8, p)

c) the domain G is divided, by means of continuous smooth surfaces,
into a finite number of subdomains Gk' in each of which, including its
boundary, the function X possesses continuous second-order partial de-
rivatives with respect to x, and the function f possesses continuous
first-order partial derivatives with respect to x and p, for 0 < p < pg;

d) on the surfaces separating the domains Gk (surfaces which will
henceforth be referred to as discontinuity surfaces) there may occur dis-
continuities of the first kind of the functions X and f, or of their
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first-order partial derivatives with respect to x and g as the case may
be, or of the second-order partial derivatives of X with respect to z;

e) the equation of the surface of discontinuity between the domains
Gk and Gk+-1 is taken to be of the form

¥, (&) =0 1.2)

It is assumed that the functions ¢% possess continuous second-order
partial derivatives on the portions of the surfaces (1.2) which actually
lie in the domain G.

It is supposed also that the generating system

dx, )

= X {xz4,1) {1.3)
possesses a family of periodic solutions, depending on ! independent
parameters

Ty = Tp (t, hl, vy kl> (1.4)

that all integral curves of this family pass through each of the Gk,that
at all points of the intersection of one of these curves and surface
(1.2) the following condition holds:

il op,.

%%’%0 (%Egradq:k) (1.5
and that the domain G contains an n-dimensional neighborhood of each
point of the (1 + 1) dimensional manifold (1.4). From the results ob-
tained in [ 1,2 ] it follows that, under the hypotheses enumerated
explicitly above, there exist periodic solutions of the system (1.1) in
the neighborhood of certain solutions (1.4), and tending continuously to
them as g » 0, In order for this to happen, the values of the parameters
Ry oon, hl in the corresponding generating solutions must satisfy
certain ! conditions:

Pk, ..., h)=0 (i=1,...10 (1.6)

These conditions were obtained in [ 11 in the form of a determinant
of order n — 1 + 1, for whose actual construction there is required the
knowledge of the point transformation effected by the solutions of the
system (1.1), Meanwhile, in the case of equations with "smooth® right-
hand sides, an integral form of conditions (1.6) has been discovered

[31.

In the present paper it is shown that this (integral) form of the
necessary condition for the existence of periodic solutions may be ex-
tended to the case of equations with discontinuous right-hand sides.
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2. Equations for the initial conditions. The derivation of the condi-
tions for the existence of the periodic solutions of Equation (1.1) which
are near to a solution of (1.4) may be carried out without employing the
method of point transformations.

Suppose that the integral curves (1.4) pass in succession through the
domains G, G2, cees Gm. Since the domain Gm is closed, these curves
must return again to the domain G,. The equation of the boundary surface
between Gn and G, is

P (2) = 0

On each of the domains G, the conditions for the existence and unique-
ness of the solutions of the system (1.3) are fulfilled. Consequently,
on each of these domains one has a general solution of this equation,
depending on an initial vector Ck and on an initial instant of time tg,:

Top = Typ (¢, Lok .Cp) k=1,...,m) (2.1)

where
Zor Lo tow Cnd = O
The integral curves (1.4) must, in Gk' coincide with some of the

curves (2.1). On the surfaces of discontinuity the conditions of con-
tinuity and periodicity must be satisfied. If Ty denotes the instants at
which the integral curves intersect the surfaces of discontinuity, then
we must have

Zok o Topo O — %o, g2 (Bp Lo, gtiCrd) = O (k=1,...,m—1) (2.2)
Com (T fomr C) — Tar (v, — T's o1, C1) =20 (2.3)
q)k [x()k ('cky tO]l" Ck)] = 0 (k = 11 A ] m) (2'4)

Equation (1.3) has a family of solutions (1.4), therefore the system
(2.2) to (2.4) must also have an ! parameter family of solutions of the
form

C,=¢0, (b1, . . .5 By), T = T (b1, ..., hy (2.5)

Here, top May be chosen arbitrarily in the interval Tp_1 S top SThe

On the other hand, it is easily seen that the general solution of Equa-
tion (1.1) in Gk is given by

2= 2y (1, ty D) = 2oy (6t D) F 09, (& toe D) (e=1,...,m) (2.6)

where ton has the same value as in (2.2) to (2.4).
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The initial vector D, at the instant rk’ at which the integral curves
return to the surfaces of discontinuity, may be determined from the
equations

Tor (Tx's Lo Di) + 0y (3 2 Dy ) — gy (V40 by gy Dygy) —

—”yk+1("‘k1’ Lo, gt Dy W) =0 k=1,...,m—1) (2.7)

T (v tomy Do) =+ Wy, (T, Lom D,, W) —za(t, —7T, tqa, D1) —
—wpn (v, — T, ta, D1, p) =0 (2.8)
@ Loy (th' top Dp) + g (55 2400 Dy W1 =0 k=1,...,m) (2.9)

It is not difficult to show that for sufficiently small values of pu
the system (2.7) to (2.9) has solutions which are close to some of the
solutions of (2.5), provided that the corresponding of the parameters
h. in (2.5) satisfy !l conditions of the type (1.6). It may alsc be shown

1
that if these values hi satisfy

Py, .. P
3y, k) T

then the solutions of the system (2.7) to (2.9) are unique and correspond
to a single solution of the system (1.1). On the other hand, this proof
need not be carried out in full, since it follows immediately from the
results of [1,2].

3. Equations of linear approximation. Let a set of values of the para-
meters hl' e hl be given, At the same time, let there be given one of
the solutions of Equations (1.3), i.e. all C, and 7, are determined. In
each of the domains Gk one may choose an initial instant in the interval
Tp_1 < tgp <7p,let us choose it such that

¢

=1 (3.1)

ok k

Then, obviously, we shall have

0x0k (Tpr T Ck)

-z
ac,

|

— 3.2
g (T Tpr Cp) = €, n (3-2)

where En is the identity matrix of n rows and n columns.

It may be shown that the conditions (3.1) are not of use for sub-
stituting in (2.6), because it may happen that t,, does not lie in the
interval [r, ", 7,”] and that the point D, is outside the domain G,.
On the other hand, it may readily be shown that the domain of definition
of the functions X and f may be extended, preserving the conditions
assuring the existence and uniqueness of solutions of the system (1.1),
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so as to contain a certain neighborhood of the boundary of the domain Gk-

and that the point D, will lie in this neighborhood when pu is sufficient-
ly small.

We may now seek the solution of Equations (1.1) of the form (2.6),
satisfying the conditions (2.7) to (2.9). If such a solution exists for
arbitrarily chosen, sufficiently small g, then as p » 0 it converges
continuously to the chosen generating solution, and the system (2.7) to
(2.9) must then possess a solution which is close to the solution of
(2.2) to (2.4), that is, the rk’ and D, must differ but little from the
T, and Ck’ Consequently, with an accuracy to higher-order terms, the
conditions (2.7) to (2.9) must be equivalent to the following relations:

or_ (T, T, C,) o (T, T,, C,)
ok \ 'k Pk TTokMYE VR YR 3N
xok (Tky Tk» Ck) -+ ack Ck -+ a1 (STk -+ (3.3)
ox (th T C,.J)
0, k41 Ve Tppyy Ypga
Y (T Ty Cpp 0 — 5y gy (T Tppys Cpy)) — C, ¢y 0Chps —
0, 4., (T Toaqs Cryq)
0, 41 \*k* ‘g1 YR
—Hyk_H (Tk, Tk+1' Cli+l’ O)“— ot 61]‘:0(]5:1, ey 7n—‘1)
oz (v, 7., C.) 3z (Trs Tynr Con)
Com Tgpr T Cp) + | — ’;Cm’" = }acm T by, (3.4)
0z (T, — T3, T1, Cy)
F WY (T Tpe Cppy 0) o1 T —T, Ty, ey _N aCy 1
0xy(t,,— T, 11, C
_ m(mat 1 ﬂmepmﬂm—ﬂThQﬁFw
9@, 1|07 (Ty,s Ty C) 0z (Tyr Ty Cp)
Pp (Zo) + 52 [ —a0— |0C, + 5 o1, + (3-5)
0’\, [ k
+ 1y (T Ty Cpo 0)} =0  (k=1,...,m)

where Srk = rk' ~ T 5¢, = D, — Cp. In view of (2.2) to (2.4) and (3.2),
Equations (3.3), (3.4) and (3.5) may be simplified; using the notation
Yor(t) = yp(t, 74, Cp, 0), we obtain

9z (T Tpayp Cray) ox . (Ty, T, C,)
0, k+1\*k k+1 k-1 ok \"k k k.
6Ck—‘ s 8C,y, + [—T_ — (3.6)
02, 1t (Tw Tryys Cry) ]
0, k1 \Yk k+1 k-+1

- 5 | 0T =1 o, e B — v @) =1, )

021 (T, — T, T1, Cy) 0% (Vs Ty C)
GCm—’ m 5 ‘6014- om matm m 3.7)

0201 (Tpy — T, T1, C1) 7
— It J 61:m =p [yol (Tm - T) _ y()m (Tm)]
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ap, Bxk(td T,, Cﬂ 0P,
a‘x‘f [ack e T | =—n 7z, Yok (ty)  k=1...m) (3.8)
o

The terms neglected here, as well as those neglected in previous
formulas, are small of the second order, because the conditions imposed
on the functions X insure the continuity of the derivatives of the L7y
with respect to all its arguments; consequently, the values of these
derivatives for Srk = SCk = 0 and the values of these derivatives for
certain mean values of the arguments (at which mean values of formulas
written are exactly true) differ but little for sufficiently small p.
Further, substituting from (2.6) into (1.1) and retaining only the first-
order terms in these equations, we arrive at

d X (x ., ¢
-g?—}' —_:” W‘a(;:%——‘) Yor () + ’fok () k=1,..., m) 3.9)

where

th‘ (t) == f {xok (E, T Ck)v t, O}

In the terminology of [4 ], the differential equations (3.9), tcgether
with the conditions (3.8) to (3.8), are called the linear approximation
to (1.1).

Equations (3.8) to (3.8) constitute a linear nonhomogeneous system for
the determination of the unknownséSCk and Srk. The coefficients of the
corresponding homogeneous system form a matrix whose determinant co-
incides with the Jacobian of the system (2.2) to (2.4). Therefore this
homogeneous system possesses | independent solutions, In such a case, as
is known, in order that there exist solutions of the nonhomogeneous
system it is necessary and sufficient that the vector of order m(n + 1)
formed by the right-hand terms of the nonhomogeneous system be orthogonal
to all 1 independent solutions of the adjoint homogeneous system (i.e.
the homogeneous system whose matrix of coefficients is the transpose of
the matrix of the coefficients of the original homogeneous system).

4. Equations of variation. Setting

z, =z, (& Ty, C.) -+ oz, @) (k=1,...,m (4.1)

and supposing that zy is small, we obtain the equations of variation for
the periodic solutions of (1.3)

day 0K @y )
di =

ax{)k z (h=1, ..., m) {4.2)
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The matrix ||d X/dzy, || is continuous* in the domain G, and Equation
(1.3) has the general solution (2.1), hence Equation (4.2) has, in this
domain, the general solution

6z0k (ty Tk' Ck)

e (k=1, ..., m) (4.3)

Z,
k k
where Ak is an arbitrary column vector, which is small, in view of the

smallness of the functions zp.

Let us now explain how the constants Ak may be chosen in order that
the variational motion (4.1) satisfy the continuity condition on the
boundary of the domains Gk and the condition of periodicity with period
T. Substituting from (4.3) into (4.1), and then setting (4.1) into (2.2)
to (2.4), we obtain

) 3z, (T,5 T, Cp) . '
-x()k (Tk s Tl\" Ck) + ack Ah - x(), k+1 (Tk » Tk+l’ C’k"l‘l) _— (4.4)
oz, T, T, Cray)
0, k4+1'\"k * “k+1 k1
— A ,,=0 k=1,...,m—1
” a1, Lax! ( )
0x 0 (T Tps C)
. . om\'m m m .
Zim (Tm s Tine Cm) -+ { 0Cm Am——-z‘ol (‘I:’m —T, 1y, Cl) —— (4.5)
axol (Tm*_ T, T1, Cl)
- acy 1=0

08, (T Ty C)
Bck

Py [%k (T T C) + Ak] =0 (k=1,...,m) (4.5)
Here rk‘ is that instant of time at which the variational integral
curve (4.1) intersects the surface of discontinuity.

The system of equations (4.4) to (4.6) differs from the system (2.2)
to (2.4) by terms of small order. Consequently, 7,* differs slightly
from T and, up to higher-order terms, the system (4,4) to (4.6) is equi-
valent to the system

’

-y . 6”’0.1!:+1A +[“M¢%)_a%.mqﬁﬂ1 —0 (4.7)
oC, || *x oC, 1, k1 at ot 1%
E=1,...,m—1)
oz F ox_(T,,) 0x4' (T, —T)
om 0l omi'm m
H acmNAm —fecy | * [ a at AT, =0 (4.8)

¢ In all matrices such as this one, each row consists of the partial
derivatives of one and the same function with respect to the independ-
ent variables in question,
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09, 1]9%a ) Zox (T3)
_—Uj‘é@; Ak-{—TATk:;:O k=1,..., m) (4.9)
where
| 9%k — 0, (T Ty Cy) ‘ ,6x0 B+l axo. i1 T Trgr Cpad) |
| aC, ac, 1 Cy, T 9C, 1, ‘
gy’ _ gy {Tm’—T, T, Cy) 8x0k (‘E’k) _ &l'ok (Tk, Tpr Ck)
aCy a0y ' at = ot

Bzc0 k+1(1:k) 6:00 k1 (T, L7 Ck-l—l)
at = ot ’

. * —
AT =10 —1T,

Equations (4.9) define uniquely the A:}:

d dg, (T),)
Ar o (p ( k _k___‘ )
k e, (*h)/ dt(l 50, ) o 0r w0 1in view of (1.5)
. (4.10
From Equation (1.3) we obtain

dx, . (1,} Bz {t)
0.k \'k 0.k+1\ Yk

at at =X () — X (1) = — A (411

where Ak denotes the jump of the function X across the surface of dis-
continunity.

Making use of (4.10) and (4.11) in (4.7) and (4.8), keeping in mind
(3.2), we obtain

a% k+4

ack+1

A, 09y | 0%y,

k=1, )
Ay — AH4+AkW@Uﬁ/W::O <m+151 ) (412)

k

The system of equations* which has been obtained is equivalent to the
homogeneous system which corresponds to (3.6) to (3.8). Therefore it also
must have ! independent solutions, which determine I continuous periodic
solutions of the variational equations (4.1). It should be observed that
the functions z; themselves need not, in general, be continuous. It is
only when alllﬁk are equal to zero, that is, when X is continuous on
every periodic solution, that the conditions (4.12) coincide with the
requirement that the functions zp be continuous.

* It is easy to see that (4.12), together with (4.2), coincide with the
linear approximation of the equations (1.3) which is obtained in

[a].
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Thus we may construct in this manner a set of !l periodic solutions of
the equations of variation (4.2), satisfying the conditions (4.12).

Let us now consider the system of linear equations which is adjoint
to (4.2)

I

u, == 0 (k=1,...,m) (4.13)

iu_k 0X (xyy. 1)
dt

0z,

and the system of linear equations

B, + acpk+1 (‘tk+1) (A/f+1 (Tk‘l—l) Bk+l) =0 (/ 1/)
k oz, AP, (Thyy) / dt

Here, and in the following, the asterisk denotes the transposed
matrix,

It is readily verified that the matrix of coefficients of the system
(4.14) is the transpose of the matrix of coefficients of (4.12). Hence
the system (4.14) also possesses l independent solutions

B®, BW ..., B, (k=1,...,m (4.15)
k k k

Let us now seek & solution of (4.13) satisfying the conditions
U (1) = B, (4.16)

Inserting (4.16) into (4.14), we obtain

’ . @)
() 0%y, pt1 v B (1) + 01 (Tn) By Tt s W) _
Upgy (Tppd) — 8Cppq || HFL Tk 0z, A1y (Thyy) /dt =
(k=0,1,...,m—1 To=1,—T) (4.17)

In view of well-known properties of the solutions of adjoint systems,
we obtain

e *

oz, || o=
0, k+1 0} 0 AL O] _ (O]
5 || (t,)= y U, (T ) =u (Thaq) (4.18)
ack+1 k41 k { ack+ﬂ ’ k+1 k41 k41 k+1
because
'axo.k+4 “~—12
l 0C; 1, ) n
Equations (4.17) then become
Oy, (B (T 15,V (T,

uk—}-l(i) (t,) — uk(l) (T,) -+ —gx;“ (T3 do, (1) /di =0 (k=1,...,m) (4.19)
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Obviously, if the function X is continuous (i.e. all the Ak = 0) then
(4.19) defines a periodic solution of the system of equations (4.13).

5. Conditions for the existence of a periodic solution. Let us return
to the solution of Equation (3.9). It is readily seen that this equation
has as a solution (for t < Tp)

:
Yo = S

Tk
provided that it is required that

oz, (1,1, C,)
ok 3
U ac, H:En

oz, (t,7,C,)
ac,

fop (M dT (k=1,...,m) 5.1)

6.2)

Inserting (5.1) into the conditions (3.6) to (3.8), we obtain the
following system:

» Tk
0%y, yt1 07y 441 (T T 0pyy)
80, — 0C, ., 8Cypa— 8T =# S \ 3C, i, fo,kp (M (5.3)
Tk41

(E=1,...,m—1)

Tm—7T

- 8:::01 " 81301 (Tm -—T. T, Cl)
5, — 81— Apbr, =p - fou () d¥ 5.4)
Tt

99 ( 0%y, (T3)

a—x()k“ héCk-f———a‘t———{STk ={ (k=1,...,m) (5.5}

Taking into account that (4.16) is a solution of the corresponding
homogenecus system, the conditions for the existence of the system (5.3)
to (5.5) may be written thus:

m—1 "‘k
“m—T

Making use of (4.18), and denoting by f,(t) the function which equals

02y 1 (T T, Cy)
aCk+1

Fo, g (O g (w) dv +

635‘01 (T -—T T, Cz)

C
I

fa(@ur, —Tydr =0 =14, 1) 68

fop On each domain G,, and denoting by u(i)(t) the function which equals

uk(“(t) in Gk we obtain the conditions for the existence of a periocdic
solution in the final form:
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Tm

S fo(x) u? (x)dz =0 Gi=1,...,10 (5.7)

tn—T

For the determination of the parameters hl' cons hl we obtain the
system

T
Pi(h1,...,hl)ngo(t)u(i)(T)ah:O (i=1,...,10 (5.8)
0

If the system (5.8) has a unique solution h;*, ..., hl‘, i.e. if the
Jacobian

(P, ... P) ] 0
L 0t k) hj:h]_*#
then the system (1.1) will have a unique solution for all sufficiently
small values of the parameter y, a solution which is close to the solu-
tion of the generating system.

The conditions (5.8) coincide formally with the conditions obtained
in [3 ] for the case of equations whose right-hand sides possess con-
tinuous partial derivatives of the second order.

However, the functions u(i) need not be continuous in the present
case; they must satisfy the conditions (4.19), which in the present case
are

n
ul) g () — wy () + = (my) NN D A @) u (1) =0 (5.9)
0s j=1
(i=1,...,L,s=1,...,n k=1,...,m)

Note. Conditions (5.7) and (5.9) still hold when the surface of dis-
continuity is given in terms of a periodic function (with period T) of
the time

¢, (x,) =0 (5.10)
In this case, condition (1.5) must be replaced by

de, 09, dxg 0,
i~ 8z ot T at

—0 (5.11)

6. Quasiconservative systems. By way of an example, illustrating the
preceding results, consider a system which is "close" to a conservative
system
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oH
o =35 + BQ (g1 - s Gy PLy - - - s Do 1o 1)
s 9p, s " " (s=1,...,n) (6.1)
. oH
I’SZ_a—qs+Mps(q1v"~1qnv.Plv"vpn7t1p’)

where H is the Hamiltonian of the generating conservative system,
supposed not to depend explicitly upon ¢, and Qs and Ps are periodic
functions of ¢t with period T.

Let us assume that the forces acting in the generating system

) oH . oH
450 = 0Py, Psg = — 3<Iso

(6.2)

are conservative forces which are discontinuous with respect to the co-
- ordinate Qs wiph a discontinuity of the first kind on the surfaces
Pr (¢, . - ., (]n) =0 (6.3)

In this case the derivatives dH/dg  also have discontinuities of the
first kind on these same surfaces.

Suppose that the system (6.2) has a periodic solution with period T.
Then, in view of the explicit independence of H upon ¢, it also has the
one parameter family of solutions

Ts0 = Ysg (t -+ h)» Pgy = Pgy (t -+ h) (6.4)
The adjoint system to the equations of variation

02H 02H . 1\ 02H 0*H
u] Z a u] 2 6

s T T ] dp;0q, v

. =— |55 . (6.5)
qyaqs v]y 8 ; apjaps v ( ’

9;9p,
possesses a family of periodic solutions

Uy = — 2-750 (t+ h), Vs = q'so (t 4 B). (6.6)
as may be readily verified by direct substitution.

Let us show that the solutions (6.6) do satisfy conditions (5.9).
Indeed, the equations for v, are identically fulfilled, since

Bq)k

Vs, k1 ™ Ve = 0, b,

The equations for the u, are

n
< ‘" 0H oH dll dIl
A N (_ _(__) } ;. =(—> _<——
21 Yk, k1 Z[ 34, )k 395 )it 950 dt /, dt)

j=1 k+1
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where Il is the potential energy of the system; hence
y n
0, 1 X
u —_—u, g - A, u;
8, k+1 8 kT 04, 49, [ dl jél ki s k1

. % 1 fEmy
= Pso, k™ Pso, k-1 T 09, 4P, [ dt (dt)kh—Kdt k+1]
__( oH ) ( oH ) n ( oIl ) ~ oIl ) 0
T\ 9% g1 ( %50 ) sy Jk ( % Jx+1

because in the case under consideration the jump of 6H/8qso equals the
jump of dIl/dg

s0°

Finally, therefore, the condition for the existence of a periodic
solution of the system which is close to a solution of (6.4), may be

written
T

'\ 2 [Ps (qjov Pjor Ty 0) éso (" + h) - Qs (q]'(y Pjov T, 0) I;so ('t + h)] dv=20 (67)
0 8

For a second-order system

&+ F (z) = pf (=, &, t, p) (6.8)

the condition (6.7) assumes the known form
T
\ 7 0,5, 0 0 (5 - W s = 0 ®.9)
0
where zg(t + h) 1s the family of periodic solutions of the generating
system
#o+ F (%) = 0

Condition (6.9) was obtained earlier for analytic F(x) and f(x, %,
t, u) (see e.g. [51]); it remains valid when these functions possess a
finite number of discontinuities of the first kind in the domain in
question.
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